Add like
Add dislike
Add to saved papers

Surface nanoscale axial photonics at a capillary fiber.

Optics Letters 2017 August 16
We present the theory and first experimental demonstration, to the best of our knowledge, of a sensing platform based on surface nanoscale axial photonics (SNAP) at a capillary fiber. The platform explores optical whispering gallery modes, which circulate inside the wall of a capillary and slowly propagate along its axis. Due to the small thickness of the capillary wall, these modes are sensitive to spatial and temporal variations of the refractive index of the media adjacent to the internal capillary surface. In particular, the developed theory allows us to determine the internal effective radius variation of the capillary from the measured mode spectra. Experimentally, a SNAP resonator is created by local annealing of the capillary with a focused CO2 laser followed by internal etching with hydrofluoric acid. The comparison of the spectra of this resonator in the cases when it is empty and filled with water allows us to determine the internal surface nonuniformity introduced by etching. The results obtained pave the way for a novel advanced approach in sensing of media adjacent to the internal capillary surface and, in particular, in microfluidic sensing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app