Add like
Add dislike
Add to saved papers

Fuzzy Object Skeletonization: Theory, Algorithms, and Applications.

Skeletonization offers a compact representation of an object while preserving important topological and geometrical features. Literature on skeletonization of binary objects is quite mature. However, challenges involved with skeletonization of fuzzy objects are mostly unanswered. This paper presents a new theory and algorithm of skeletonization for fuzzy objects, evaluates its performance, and demonstrates its applications. A formulation of fuzzy grassfire propagation is introduced; its relationships with fuzzy distance functions, level sets, and geodesics are discussed; and several new theoretical results are presented in the continuous space. A notion of collision-impact of fire-fronts at skeletal points is introduced, and its role in filtering noisy skeletal points is demonstrated. A fuzzy object skeletonization algorithm is developed using new notions of surface- and curve-skeletal voxels, digital collision-impact, filtering of noisy skeletal voxels, and continuity of skeletal surfaces. A skeletal noise pruning algorithm is presented using branch-level significance. Accuracy and robustness of the new algorithm are examined on computer-generated phantoms and micro- and conventional CT imaging of trabecular bone specimens. An application of fuzzy object skeletonization to compute structure-width at a low image resolution is demonstrated, and its ability to predict bone strength is examined. Finally, the performance of the new fuzzy object skeletonization algorithm is compared with two binary object skeletonization methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app