Add like
Add dislike
Add to saved papers

Low-Rank Latent Pattern Approximation With Applications to Robust Image Classification.

This paper develops a novel method to address the structural noise in samples for image classification. Recently, regression-related classification methods have shown promising results when facing the pixelwise noise. However, they become weak in coping with the structural noise due to ignoring of relationships between pixels of noise image. Meanwhile, most of them need to implement the iterative process for computing representation coefficients, which leads to the high time consumption. To overcome these problems, we exploit a latent pattern model called low-rank latent pattern approximation (LLPA) to reconstruct the test image having structural noise. The rank function is applied to characterize the structure of the reconstruction residual between test image and the corresponding latent pattern. Simultaneously, the error between the latent pattern and the reference image is constrained by Frobenius norm to prevent overfitting. LLPA involves a closed-form solution by the virtue of a singular value thresholding operator. The provided theoretic analysis demonstrates that LLPA indeed removes the structural noise during classification task. Additionally, LLPA is further extended to the form of matrix regression by connecting multiple training samples, and alternating direction of multipliers method with Gaussian back substitution algorithm is used to solve the extended LLPA. Experimental results on several popular data sets validate that the proposed methods are more robust to image classification with occlusion and illumination changes, as compared to some existing state-of-the-art reconstruction-based methods and one deep neural network-based method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app