Add like
Add dislike
Add to saved papers

Synthesis and Insecticidal Activity of Enzyme-Triggered Functionalized Hollow Mesoporous Silica for Controlled Release.

In the present study, enzymatic responsive controlled release formulations (CRFs) were fabricated. The CRFs were achieved by anchoring mechanically interlocked molecules using α-cyclodextrin onto the surface pore rims of hollow mesoporous silica (HMS). The CRFs were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis. The results showed that the CRFs had extraordinary loading ability for chlorantraniliprole (42% w/w) and could effectively preserve chlorantraniliprole against degradation under thermal conditions and UV radiation. The CRFs have been proven to be enzyme-sensitive. The release ratio of chlorantraniliprole from CRFs can be accelerated observably when external α-amylase was introduced. The persistence of CRFs was evaluated by regular sampling feeding experiment using Plutella xylostella as the target insect. The results showed that the larval mortality of P. xylostella was much higher than that of Coragen under all concentrations after 14 days, which proved that CRFs had remarkable persistence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app