Add like
Add dislike
Add to saved papers

Interfacially Engineered Pyridinium Pseudogemini Surfactants as Versatile and Efficient Supramolecular Delivery Systems for DNA, siRNA, and mRNA.

This article presents the synthesis, self-assembly, and biological activity as transfection agents for pDNA, siRNA, and mRNA of novel pyridinium pseudogemini surfactants, interfacially engineered from the most efficient gemini surfactants and lipids generated in our amphiphile research program. Formulation of novel amphiphiles in water revealed supramolecular properties very similar to those of gemini surfactants, despite their lipidlike charge/mass ratio. This dual character was found also to enhance endosomal escape and significantly increase the transfection efficiency. We were also successful in identifying the parameters governing the efficient delivery of pDNA, siRNA, and mRNA, drawing valuable structure-activity and structure-property relationships for each nucleic acid type, and establishing DNA/siRNA/mRNA comparisons. Several supramolecular complexes identified in this study proved to be extremely efficient nucleic acid delivery systems, displaying excellent serum stability and tissue penetration in three-dimensional organoids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app