Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Allosteric modulation of α4β2* nicotinic acetylcholine receptors: Desformylflustrabromine potentiates antiallodynic response of nicotine in a mouse model of neuropathic pain.

BACKGROUND: Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels. The α4β2 subtype of nAChRs plays an important role in the mediation of pain and several nicotine-evoked responses. Agonists and partial agonists of α4β2 nAChRs show efficacy in animal pain models. In addition, the antinociceptive properties of nicotine, a non-selective nAChR agonist with a high affinity for α4β2 nAChRs, is well-known. There is a growing body of evidence pointing to allosteric modulation of nAChRs as an alternative treatment strategy in experimental pain. Desformylflustrabromine (dFBr) is a positive allosteric modulator (PAM) at α4β2 nAChRs that enhances agonist responses without activating receptors. We hypothesized that dFBr may enhance nicotine-induced antinociception.

METHODS: The present study investigated whether dFBr could attenuate mouse chronic constriction injury (CCI)-induced neuropathic pain by increasing endogenous cholinergic tone or potentiating the nicotine-evoked antiallodynic response.

RESULTS: We found that subcutaneous administration of dFBr failed to reduce pain behaviour on its own. However, the combination of dFBr with nicotine significantly reversed neuropathic pain behaviour dose- and time-dependently without motor impairment. Our data revealed that this effect was mediated by the α4β2 nAChRs by using competitive α4β2 antagonist dihydro-β-erythroidine. In addition, dFBr failed to potentiate the antiallodynic effect of morphine, which shows the effect of dFBr is unique to α4β2 nAChRs.

CONCLUSIONS: The present results suggest that allosteric modulation of α4β2 nAChR may provide new strategies in chronic neuropathic pain.

SIGNIFICANCE: α4β2 nAChRs are involved in pain modulation. dFBr, a PAM at α4β2 nAChRs, potentiates the nicotine response dose-dependently in neuropathic pain. Thus, the present results suggest that allosteric modulation of α4β2* nAChR may provide new strategies in chronic neuropathic pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app