Add like
Add dislike
Add to saved papers

Synthesis, Characterization, and Adsorptive Properties of Fe3O4/GO Nanocomposites for Antimony Removal.

A magnetic Fe3O4/GO composite with potential for rapid solid-liquid separation through a magnetic field was synthesized using GO (graphene oxide) and Fe3O4 (ferriferous oxide). Characterization of Fe3O4/GO used scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FT-IR), and Vibrating Sample Magnetometer (VSM). A number of factors such as pH and coexisting ions on adsorbent dose were tested in a series of batch experiments. The results showed that GO and Fe3O4 are strongly integrated. For pH values in the range of 3.0~9.0, the removal efficiency of Sb(III) using the synthesized Fe3O4/GO remained high (95%). The adsorption showed good fit to a pseudo-second-order and Langmiur model, with the maximum adsorption capacity of 9.59 mg/g maintained across pH 3.0-9.0. Thermodynamic parameters revealed that the adsorption process was spontaneous and endothermic. Analysis by X-ray photoelectron spectroscopy (XPS) showed that the adsorption process is accompanied by a redox reaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app