Add like
Add dislike
Add to saved papers

A combinatorial approach for the discovery of cytochrome P450 2D6 inhibitors from nature.

Scientific Reports 2017 August 15
The human cytochrome P450 2D6 (CYP2D6) enzyme is part of phase-I metabolism and metabolizes at least 20% of all clinically relevant drugs. Therefore, it is an important target for drug-drug interaction (DDI) studies. High-throughput screening (HTS) assays are commonly used tools to examine DDI, but show certain drawbacks with regard to their applicability to natural products. We propose an in silico - in vitro workflow for the reliable identification of natural products with CYP2D6 inhibitory potential. In order to identify candidates from natural product-based databases that share similar structural features with established inhibitors, a pharmacophore model was applied. The virtual hits were tested for the inhibition of recombinant human CYP2D6 in a bioluminescence-based assay. By controlling for unspecific interferences of the test compounds with the detection reaction, the number of false positives were reduced. The success rate of the reported workflow was 76%, as most of the candidates identified in the in silico approach were able to inhibit CYP2D6 activity. In summary, the workflow presented here is a suitable and cost-efficient strategy for the discovery of new CYP2D6 inhibitors with natural product libraries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app