Add like
Add dislike
Add to saved papers

Farnesol inhibits development of caries by augmenting oxygen sensitivity and suppressing virulence-associated gene expression inStreptococcus mutans.

Streptococcus mutans is a primary etiological agent of dental caries. Farnesol, as a potential antimicrobial agent, inhibits the development ofS. mutans biofilm. In this study, we hypothesized that farnesol inhibits caries development in vitro and interferes with biofilm formation by regulating virulence-associated gene expression. The inhibitory effects of farnesol to S. mutans biofilms on enamel surfaces were investigated by determining micro-hardness and calcium measurements. Additionally, the morphological changes ofS. mutans biofilms were compared using field emission scanning electron microscopy and confocal laser scanning microscopy, and the vitality and oxygen sensitivity ofS. mutans biofilms were compared using MTT assays. To investigate the molecular mechanisms of farnesol's effects, expressions of possible target genesluxS, brpA, ffh, recA, nth, and smx were analyzed using reverse-transcription polymerase chain reaction (PCR) and quantitative PCR. Farnesol-treated groups exhibited significantly higher micro-hardness on the enamel surface and lower calcium concentration of the supernatants as compared to the-untreated control. Microscopy revealed that a thinner film with less extracellular matrix formed in the farnesol-treated groups. As compared to the-untreated control, farnesol inhibited biofilm formation by 26.4% with 500 µmol/L and by 37.1% with 1,000 µmol/L (P<0.05). Last, decreased transcription levels of luxS, brpA, ffh, recA, nth, and smx genes were expressed in farnesol-treated biofilms. In vitrofarnesol inhibits caries development and S. mutans biofilm formation. The regulation of luxS, brpA, ffh, recA, nth, and smx genes may contribute to the inhibitory effects of farnesol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app