Add like
Add dislike
Add to saved papers

Thalamic paramagnetic iron by T2* relaxometry correlates with severity of multiple sclerosis.

Iron can contribute to the pathogenesis and progression of multiple sclerosis (MS) due to its accumulation in the human brain. We focus on the thalamus as an information transmitter between various subcortical and cortical areas. Thalamic iron seems to follow different rules than iron in other deep gray matter structures and its relation to the clinical outcomes of MS is still indistinct. In our study, we investigated a connection between thalamic iron and patients' disability and course of the disease. The presence of paramagnetic substances in the tissues was tracked by T2* quantification. Twenty-eight subjects with definite MS and 15 age-matched healthy controls underwent MRI examination with a focus on gradient echo sequence. We observed a non-monotonous course of T2* values with age in healthy controls. Furthermore, T2* distribution in MS patients was significantly wider than that of age matched healthy volunteers (P<0.001). A strong significant correlation was demonstrated between T2* distribution spread and the expanded disability status scale (EDSS) (left thalamus:P<0.00005; right thalamus: P<0.005), and multiple sclerosis severity scale (MSSS) (left thalamus: P<0.05; right thalamus: P<0.005). The paramagnetic iron distribution in the thalamus in MS was not uniform and this inhomogeneity may be considered as an indicator of thalamic neurodegeneration in MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app