Add like
Add dislike
Add to saved papers

Docosahexaenoic acid increases the expression of oxidative stress-induced growth inhibitor 1 through the PI3K/Akt/Nrf2 signaling pathway in breast cancer cells.

Oxidative stress-induced growth inhibitor 1 (OSGIN1), a tumor suppressor, inhibits cell proliferation and induces cell death. N-6 and n-3 PUFAs protect against breast cancer, but the molecular mechanisms of this effect are not clear. We investigated the effect of n-6 and n-3 PUFAs on OSGIN1 expression and whether OSGIN1 is involved in PUFA-induced apoptosis in breast cancer cells. We used 100 μM of n-6 PUFAs including arachidonic acid, linoleic acid, and gamma-linolenic acid and n-3 PUFAs including alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid (DHA). Only DHA significantly induced OSGIN1 protein and mRNA expression. DHA triggered reactive oxygen species (ROS) generation and nuclear translocation of Nrf2. LY294002, a PI3K inhibitor, suppressed DHA-induced OSGIN1 protein expression and nuclear accumulation of Nrf2. Nrf2 knockdown attenuated DHA-induced OSGIN1 expression. N-Acetyl-l-cysteine, a ROS scavenger, abrogated the DHA-induced increases in Akt phosphorylation, Nrf2 nuclear accumulation, and OSGIN1 expression. DHA induced the Bax/Bcl-2 ratio, mitochondrial accumulation of OSGIN1 and p53, and cytochrome c release; knockdown of OSGIN1 diminished these effects. In conclusion, induction of OSGIN1 by DHA is at least partially associated with increased ROS production, which activates PI3K/Akt/Nrf2 signaling. Induction of OSGIN1 may be involved in DHA-induced apoptosis in breast cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app