JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Flavan 3-ol delays the progression of disuse atrophy induced by hindlimb suspension in mice.

Periods of skeletal muscle disuse, for example due to a sedentary lifestyle or bed rest, are associated with aging and can lead to muscle atrophy. We previously found that the flavan 3-ol fraction derived from cocoa (FL) enhanced energy expenditure with metabolic changes in skeletal muscle. In the present study, we examined the effect of FL on disuse muscle atrophy induced by hindlimb suspension in mice. Male C57BL/6J mice were assigned to four groups as follows: unsuspended-vehicle, unsuspended-FL, suspended-vehicle, and suspended-FL. Mice in the vehicle treatment groups were administered distilled water and those in the FL treatment groups were dosed with FL (50mg/kg/day) for 2weeks. The weights of the gastrocnemius (GC), tibialis anterior (TA), and soleus (SOL), but not the extensor digitorum longus (EDL), decreased significantly in mice with hindlimb suspension (-11.8%, -16.5%, and -41.0%, respectively). This reduction in GC, TA, and SOL mass was inhibited by FL (-5.3%, +2.0%, and -16.6%, respectively). The FL increased the EDL weight >20% with or without hindlimb suspension. The protein level of the ubiquitin ligase, muscle ring finger-1, in the SOL was significantly increased by hindlimb suspension, but inhibited by treatment with FL. Protein expression of p70S6 kinase in the SOL was significantly decreased by hindlimb suspension, and FL treatment inhibited this change. These results suggested that FL delayed disuse muscle atrophy by metabolic alteration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app