Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Staphylococcal enterotoxin C2 mutant drives T lymphocyte activation through PI3K/mTOR and NF-ĸB signaling pathways.

Staphylococcal enterotoxin C2 (SEC2), a superantigen, causes rapid clonal expansion of lymphocytes and secretion of T cell growth factors, leading to a severe inflammatory response within tissues. Although previous studies have shown that ST-4, a SEC2 mutant with enhanced recognition of Vβ regions of T-cell receptors (TCRVβ), can activate an increased number of T cells and produce more cytokines than SEC2. However, the signaling mechanisms of SEC2/ST-4-mediated immune activation have not been addressed. In this study, we showed that the phosphatidylinositide-3-kinase (PI-3K) inhibitor LY294002, mammalian target of rapamycin (mTOR) inhibitor rapamycin, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibitor Bay11-7085 could suppress SEC2/ST-4-induced proliferation, CD69/CD25 expression, cell-cycle progression, and IL-2 production in BALB/c mouse splenocytes. In addition, we observed significantly upregulated expression of p70S6K, cyclin E, cyclin D3, and NF-ĸB/p65, but downregulated expression of p27kip during SEC2/ST-4-driven T cells activation. However, SEC2/ST-4-induced changes in cell cycle and PI3K/mTOR signaling were significantly relieved by either LY294002 or rapamycin, and the induction of NF-ĸB/p65 induced was significantly downregulated by Bay11-7085. Moreover, we found that IL-2 secretion was positively associated with p65 expression in a time- and dose-dependent manner. Taken together, our findings demonstrate the involvement of PI3K/mTOR and NF-κB signaling pathways in SEC2/ST-4-induced T cell activation. ST-4 intensifies PI3K/mTOR and NF-ĸB signaling transduction, ultimately leading to enhance T cell activation. These results provide a theoretical mechanism for future immunotherapy using ST-4.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app