Add like
Add dislike
Add to saved papers

Size optimization and in vitro biocompatibility studies of chitosan nanoparticles.

Chitosan (CS), an amino polysaccharide has fascinating scientific applications due to its many flexible properties. The advantages of Chitosan tend to increase when it was modified. Thus, in the present research work, to improve the properties of chitosan, it was converted into chitosan nanoparticles (CS-NPs) through the ionic gelation method using sodium tripoyphosphate (TPP) and sodium hexametaphosphate (SHMP) as a crosslinker. The size optimization was done by varying the parameters such as crosslinker concentration, agitation method and rate, agitation time, temperature and drying method. The prepared samples were characterized using FTIR, TGA, XRD, SEM, TEM and DLS. Also the prepared CS-NPs with TPP and SHMP had been evaluated in vitro for determining its hemocompatibility, biodegradability, serum stability, cytotoxicity and cell viability. The results showed the significant participation of all the parameters in obtaining the nanoparticles in 20-30nm and 5-10nm for CS-NPs-TPP air dried and freeze dried samples and around 60-80nm and 20-30nm for CS-NPs-SHMP air dried and freeze dried samples. The in vitro biological studies revealed that the nanoparticles are non-toxic with a good degree of biodegradability, blood compatibility and stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app