Journal Article
Review
Add like
Add dislike
Add to saved papers

Opportunities for model-based precision dosing in the treatment of sickle cell anemia.

Hydroxyurea is the primary pharmacotherapy to prevent complications of sickle cell anemia (SCA). Accumulated clinical experience across multiple age ranges has suggested that the use of an individualized maximum tolerated dose (MTD) will achieve optimal benefit of hydroxyurea treatment. However, the current empirical and trial-and-error approach for dose escalation often results in a lengthy titration process and is not strictly implemented in many clinics. Opportunities exist for pharmacokinetics model-based precision dosing of hydroxyurea to quickly achieve individual MTD. This review intends to introduce the use of a quantitative modeling approach including a Bayesian adaptive control strategy for the precision dosing of hydroxyurea. The rationale and practical considerations for the implementation of this approach are discussed. Future research directions with a focus on integrating specific safety and other clinical outcome endpoints into dose selection decision making are also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app