Add like
Add dislike
Add to saved papers

A portable synthesis of water-soluble carbon dots for highly sensitive and selective detection of chlorogenic acid based on inner filter effect.

In this work, a simple and facile hydrothermal method for synthesis of water-soluble carbon dots (CDs) with malic acid and urea, and were then employed as a high-performance fluorescent probe for selective and sensitive determination of chlorogenic acid (CGA) based on inner filter effect. The as-synthesized CDs was systematically characterized by Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Energy disperse spectroscopy (EDS), UV-vis absorption spectroscopy, spectrofluorophotometry, and the results indicated that the sizes of CDs were mainly distributed in the range of 1.0nm-3.0nm with an average diameter of 2.1nm. More significantly, the as-prepared CDs possessed remarkable selectivity and sensitivity towards CGA with the linear range of 0.15μmolL-1 -60μmolL-1 and the detection limit for CGA was 45nmolL-1 (3σ/k). The practical applications of CDs for detection of CGA have already been successfully demonstrated in Honeysuckle. This sensitive, selective method has a great application prospect in the pharmaceutical and biological analysis field owing to its simplicity and rapidity for the detection of CGA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app