Add like
Add dislike
Add to saved papers

Influence of the residue from an iron mining dam in the growth of two macrophyte species.

Chemosphere 2017 November
On November 5th, 2015 the worst environmental disaster in Brazil spilled 60 million m3 of iron mining residue into Gualaxo do Norte River (Minas Gerais State), an affluent of the highest River Basin of the Brazilian Southeast (Doce River Basin), reaching the Atlantic Ocean. To assess the impact of the iron residue on the aquatic plant metabolism, we performed macrophyte growth experiments under controlled light and temperature conditions using two species (Egeria densa and Chara sp.). The plants' growth data were fitted in a kinetic model to obtain the biomass yields (K) and growth rates (μ). Turbidity and electrical conductivity of the water were measured over time. Both plants showed the highest growth rates in the contaminated condition (0.056 d-1 for E. densa and 0.45 d-1 for Chara sp.) and the biomass increased in the short-term (≈20 days). The control condition (i.e. no impacted water) supported the biomass increasing over time and the development of vegetative buddings with high daily rates (1.75 cm d-1 for E. densa and 0.13 cm d-1 for Chara sp). Turbidity showed a sharp decrease in 48 h and had no effects in the plants growth in the contaminated condition. The contamination affected the plants' yields in the long-term affecting the biomass development. This study provides preliminary information about the ecological consequences of a mining dam rupture aiming to collaborate with monitoring and risk assessments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app