Add like
Add dislike
Add to saved papers

Chlorination Kinetics of 11-Nor-9-carboxy-Δ(9)-tetrahydrocannabinol: Effects of pH and Humic Acid.

The main psychoactive compound in marijuana, Δ(9)-tetrahydrocannabinol (THC), and its metabolites are emerging organic contaminants that have been detected in waste and surface waters. As legalization of marijuana for medical and recreational use continues, the effects of increased use and potency of marijuana on water and wastewater treatment processes and the environment should be considered. This study examined degradation kinetics of the main urinary metabolite of THC, 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) with chlorine. THC-COOH was rapidly removed from both deionized (DI) water at pH 5.6 ± 0.2 and Suwannee River humic acid (SRHA) at pH 5.1 ± 0.2 using low doses of chlorine (0.1 to 0.50 mg free Cl2/L), with half-lives calculated from second-order kinetics constants (k2) of 8 s for DI and 42 s for DI with SRHA. Kinetic rates increased with an increase in pH from 5 to 9 in both DI water and SRHA and no interference from phosphate was observed. The chlorination pathway of electrophilic substitution of Cl at the ortho or para position of the phenol structure of THC-COOH was confirmed by detection of monochlorinated byproduct fragmentation ions using flow injection analysis with orbitrap mass spectrometry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app