Add like
Add dislike
Add to saved papers

Smart DNA Machine for Carcinoembryonic Antigen Detection by Exonuclease III-Assisted Target Recycling and DNA Walker Cascade Amplification.

Analytical Chemistry 2017 September 6
A synthetic DNA machine performs quasi-mechanical movements in response to external intervention, suggesting the promise of constructing sensitive and specific biosensors. Herein, a smart DNA walker biosensor for label-free detection of carcinoembryonic antigen (CEA) is developed for the first time by a novel cascade amplification strategy of exonuclease (Exo) III-assisted target recycling amplification (ERA) and DNA walker. ERA as the first stage of amplification generates the walker DNA, while the autonomous traveling of the walker DNA on the substrate-modified silica microspheres as the second stage of amplification produces an ultrasensitive fluorescent signal with the help of N-methylmesoporphyrin IX (NMM). The DNA machine as a biosensor could be applied for transducing and quantifying signals from isothermal molecular amplifications, avoiding the complicated reporter elements and thermal cycling. The present biosensor achieves a detection limit of 1.2 pg·mL(-1) within a linear range of 10 pg·mL(-1) to 100 ng·mL(-1) for CEA, along with a favorable specificity. The practical applicability of the biosensor is demonstrated by the detection of CEA in human serum with satisfactory results; thus, it shows great potential in clinical diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app