Add like
Add dislike
Add to saved papers

Technical note: Impact of pedigree depth on convergence of single-step genomic BLUP in a purebred swine population.

In genomic evaluations, it is desirable to have low computing cost while retaining high accuracy of evaluation for young animals. When the population is large but only few animals have phenotypes, especially for low heritability traits, the convergence rate of BLUP or single-step genomic BLUP (ssGBLUP) can be very slow. This study investigates the effect of pedigree truncation on convergence rate and solutions of ssGBLUP for data exhibiting slow convergence. The data consisted of 216,000, 221,000, 732,000, and 579,000 phenotypes on 4 traits. Heritabilities were less than 0.1 for 2 traits and greater than 0.2 for the other 2 traits. The full pedigree consisted of 2.4 million animals. Genotypes were available for 33,000 animals and consisted of 60,000 SNP. Two bivariate animal models were fit using pedigree-based BLUP or ssGBLUP. Either a regular or the algorithm for proven and young (APY) inverse was used for the genomic relationship matrix. Different pedigree depths were analyzed including full pedigree and 1 to 5 ancestral generations. Pedigree depths were defined as n ancestral generations for animals with phenotypes. The number of animals in the reduced pedigrees varied from 226,000 and 760,000 for 1 generation to 228,000 and 767,000 for 5 generations. Genomic EBV (GEBV) for genotyped animals had correlations greater than 0.99 between runs with the full and reduced pedigrees with 2 to 5 generations. A single generation of pedigree was not sufficient to obtain the same GEBV as full pedigree. The convergence rate was the worst with the full pedigree and generally improved with reduced pedigrees. Using ssGBLUP with the APY inverse improved convergence without affecting accuracy. Reducing pedigrees and the APY are important tools to reduce the computational cost in the implementation of ssGBLUP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app