Add like
Add dislike
Add to saved papers

Enteric methane emissions from low- and high-residual feed intake beef heifers measured using GreenFeed and respiration chamber techniques.

The objectives of this study were to evaluate the relationship between residual feed intake (RFI; g/d) and enteric methane (CH) production (g/kg DM) and to compare CH and carbon dioxide (CO) emissions measured using respiration chambers (RC) and the GreenFeed emission monitoring (GEM) system (C-Lock Inc., Rapid City, SD). A total of 98 crossbred replacement heifers were group housed in 2 pens and fed barley silage ad libitum and their individual feed intakes were recorded by 16 automated feeding bunks (GrowSafe, Airdrie, AB, Canada) for a period of 72 d to determine their phenotypic RFI. Heifers were ranked on the basis of phenotypic RFI, and 16 heifers (8 with low RFI and 8 with high RFI) were randomly selected for enteric CH and CO emissions measurement. Enteric CH and CO emissions of individual animals were measured over two 25-d periods using RC (2 d/period) and GEM systems (all days when not in chambers). During gas measurements metabolic BW tended to be greater ( ≤ 0.09) for high-RFI heifers but ADG tended ( = 0.09) to be greater for low-RFI heifers. As expected, high-RFI heifers consumed 6.9% more feed ( = 0.03) compared to their more efficient counterparts (7.1 vs. 6.6 kg DM/d). Average CH emissions were 202 and 222 g/d ( = 0.02) with the GEM system and 156 and 164 g/d ( = 0.40) with RC for the low- and high-RFI heifers, respectively. When adjusted for feed intake, CH yield (g/kg DMI) was similar for high- and low-RFI heifers (GEM: 27.7 and 28.5, = 0.25; RC: 26.5 and 26.5, = 0.99). However, CH yield differed between the 2 measurement techniques only for the high-RFI group ( = 0.01). Estimates of CO yield (g/kg DMI) also differed between the 2 techniques ( ≤ 0.03). Our study found that high- and low-efficiency cattle produce similar CH yield but different daily CH emissions. The 2 measurement techniques differ in estimating CH and CO emissions, partially because of differences in conditions (lower feed intakes of cattle while in chambers, fewer days measured in chambers) during measurement. We conclude that when intake of animals is known, the GEM system offers a robust and accurate means of estimating CH emissions from animals under field conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app