Add like
Add dislike
Add to saved papers

Tet1-mediated DNA demethylation involves in neuron damage induced by bilirubin in vitro.

The aim of this study is to identify the role of Tet1-mediated DNA demethylation in the neurotoxicity caused by unconjugated bilirubin (UCB) in vitro. Primary neuronal cells after cultured for 72 h were exposed to UCB (0-100 μmol/L) for 24 h. Following exposure to UCB cytotoxicity was determined with the methyl tetrazolium (MTT) assay, reactive oxygen species (ROS) and caspase-3 activity in neuron cells were measured with the corresponding assay kits. The expression of Tet1 and Klotho was determined with RT-PCR at mRNA level and western blot at protein level. Our results showed that UCB can cause time-dependent and dose-dependent reduction of cell viability of neuronal cells, induce oxidative stress through increasing the production of ROS and increase caspase-3 activity. Quantitative real-time PCR and western blot analysis showed that UCB can inhibit Tet1 and Klotho expression in cultured neuronal cells at both the mRNA and protein level, respectively. These results are first to suggest UCB may, in part, exert its neurotoxicity through alteration of the neuronal antioxidant status and inhibition of Klotho and Tet1 gene expression. The elevation of DNA methylation in global genome through inhibition of Tet1 gene expression may, in part, play an important role in the neurotoxicity caused by UCB in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app