Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Estimated exposures to perfluorinated compounds in infancy predict attenuated vaccine antibody concentrations at age 5-years.

Perfluorinated alkylate substances (PFASs) are highly persistent and may cause immunotoxic effects. PFAS-associated attenuated antibody responses to childhood vaccines may be affected by PFAS exposures during infancy, where breastfeeding adds to PFAS exposures. Of 490 members of a Faroese birth cohort, 275 and 349 participated in clinical examinations and provided blood samples at ages 18 months and 5 years. PFAS concentrations were measured at birth and at the clinical examinations. Using information on duration of breastfeeding, serum-PFAS concentration profiles during infancy were estimated. As outcomes, serum concentrations of antibodies against tetanus and diphtheria vaccines were determined at age 5. Data from a previous cohort born eight years earlier were available for pooled analyses. Pre-natal exposure showed inverse associations with the antibody concentrations five years later, with decreases by up to about 20% for each two-fold higher exposure, while associations for serum concentrations at ages 18 months and 5 years were weaker. Modeling of serum-PFAS concentration showed levels for age 18 months that were similar to those measured. Concentrations estimated for ages 3 and 6 months showed the strongest inverse associations with antibody concentrations at age 5 years, particularly for tetanus. Joint analyses showed statistically significant decreases in tetanus antibody concentrations by 19-29% at age 5 for each doubling of the PFAS exposure in early infancy. These findings support the notion that the developing adaptive immune system is particularly vulnerable to immunotoxicity during infancy. This vulnerability appears to be the greatest during the first 6 months after birth, where PFAS exposures are affected by breast-feeding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app