Add like
Add dislike
Add to saved papers

A simplified ab initio treatment of diradicaloid structures produced from stretching and breaking chemical bonds.

The present investigation reports on the prospect of using state specific multireference perturbation theory (SSMRPT) with an improved virtual orbital complete active space configuration interaction (IVO-CASCI) reference function (IVO-SSMRPT) to generate potential energy surfaces (PESs) for molecular systems [such as CH4 , C2 H6 , C2 H4 , H2 O2 , LiH, and KN] by stretching and breaking of suitable bonds with modest basis sets. We have also revisited the dissociation energy profile of triplet ketene which exhibits a step-like structure in the observed rate. The application of the method has also been made to the ionization energies of H2 O. Although the perturbative corrections are obtained by the diagonalization of the effective Hamiltonian, in IVO-SSMRPT, only one physically relevant solution is achievable. It is parameter free and does not require any threshold to avoid the intruder problem. It is strictly size-extensive and size-consistent provided that local orbitals are used. The PESs obtained with our approach are smooth all along the reaction path. Our estimates are in close agreement with the available reference data indicating that IVO-SSMRPT is a robust paradigm for the accurate computation of ground, excited and ionized states as it captures the mutual inter-play of different flavors of correlation effects in a balanced and accurate way.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app