Add like
Add dislike
Add to saved papers

Gaseous Nanocarving-Mediated Carbon Framework with Spontaneous Metal Assembly for Structure-Tunable Metal/Carbon Nanofibers.

Advanced Materials 2017 October
Vapor phase carbon (C)-reduction-based syntheses of C nanotubes and graphene, which are highly functional solid C nanomaterials, have received extensive attention in the field of materials science. This study suggests a revolutionary method for precisely controlling the C structures by oxidizing solid C nanomaterials into gaseous products in the opposite manner of the conventional approach. This gaseous nanocarving enables the modulation of inherent metal assembly in metal/C hybrid nanomaterials because of the promoted C oxidation at the metal/C interface, which produces inner pores inside C nanomaterials. This phenomenon is revealed by investigating the aspects of structure formation with selective C oxidation in the metal/C nanofibers, and density functional theory calculation. Interestingly, the tendency of C oxidation and calculated oxygen binding energy at the metal surface plane is coincident with the order Co > Ni > Cu > Pt. The customizable control of the structural factors of metal/C nanomaterials through thermodynamic-calculation-derived processing parameters is reported for the first time in this work. This approach can open a new class of gas-solid reaction-based synthetic routes that dramatically broaden the structure-design range of metal/C hybrid nanomaterials. It represents an advancement toward overcoming the limitations of intrinsic activities in various applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app