Add like
Add dislike
Add to saved papers

The pattern of IL-24/mda-7 and its cognate receptors expression following activation of human hepatic stellate cells.

Biomedical Reports 2017 August
Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrosis. Interleukin (IL)-24/melanoma differentiation-associated gene-7 (mda-7) has attracted attention in the pathophysiology of some diseases, while its role in activation/suppression of human HSCs is still unclear. It is important to elucidate whether the expression levels of the IL-24/mda-7 protein and its receptors in HSC cells are changed following activation. LX-2 cells, a human hepatic stellate cell line were activated by a combination of leptin and serum starvation. The activation state was evaluated through measuring the mRNA expression of profibrotic molecules, collagen-I, TIMP metalloproteinase inhibitor-1 and transforming growth factor-β. The expression of IL-24/mda-7 was assessed in mRNA and protein levels by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and ELISA methods, respectively. Hence, the amount of IL-22R1 and IL-20R2 subunit expression was also compared in activated and normal LX-2 cells by RT-qPCR. The expression level of IL-24/mda-7 and its cognate receptors was detectable both in the normal and activated LX-2 cell line. Furthermore, in activated LX-2, a significant increase of IL24 expression either on IL-22R1 and IL-20R2 subunits was also noticeable in comparison to normal cells. The activation state of LX-2 cells caused significant changes of IL-24/mda-7 and its receptors expression. In addition, the elevation in IL-24/mda-7 during LX-2 cell activation, suggested that IL-24/mda-7 and its cognate receptors serve a possible role in the development of the fibrosis process. Therefore, IL-24/mda-7 and relevant signaling pathways may be employed as a target for fibrosis treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app