Add like
Add dislike
Add to saved papers

A multiple-antigen detection assay for tuberculosis diagnosis based on broadly reactive polyclonal antibodies.

OBJECTIVES: Detection of circulating Mycobacterium tuberculosis (M. tuberculosis) antigens is promising in Tuberculosis (TB) diagnosis. However, not a single antigen marker has been found to be widely expressed in all TB patients. This study is aimed to prepare broadly reactive polyclonal antibodies targeting multiple antigen markers (multi-target antibodies) and evaluate their efficacies in TB diagnosis.

MATERIALS AND METHODS: A fusion gene consisting of 38kD, ESAT6, and CFP10 was constructed and overexpressed. The fusion polyprotein was used as an immunogen to elicit production of multi-target antibodies. Their reactivities were tested. Then, the multi-target antibodies and three corresponding antibodies elicited by each single antigen (mono-target antibodies) were evaluated with sandwich ELISA for detecting M. tuberculosis antigens. Their diagnostic efficacies for TB were also compared.

RESULTS: The polyprotein successfully elicited production of multi-target antibodies targeting 38kD, ESAT6, and CFP10 as analyzed by Western blotting. When used as coating antibodies, the multi-target antibodies were more efficient in capturing the three antigens than the corresponding mono-target antibodies. By testing clinical serum, the multi-target antibodies demonstrated significantly higher sensitivity for clinical TB diagnosis than all three mono-target antibodies.

CONCLUSION: The multi-target antibodies allowed detecting multiple antigens simultaneously and significantly enhanced TB detection compared to routine mono-target antibodies. Our study may provide a promising strategy for TB diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app