Add like
Add dislike
Add to saved papers

Premature exhaustion of mesenchymal stromal cells from myelodysplastic syndrome patients.

Myelodysplastic syndrome (MDS) predominantly occurs in aging people. Over the past decades, the cellular and molecular pathologies of MDS cells have been intensively investigated. However, how the bone marrow stromal niches are altered during MDS development remains elusive. In this study, we attempted to isolate and characterize mesenchymal stromal cells (MSCs) from 30 MDS patients. We observed that only 9/30 bone marrow aspirations from MDS patients successfully formed a monolayer in vitro, while 17/17 bone marrow aspirations from normal donors (median age 45 years, range: 22-73 years) succeeded in this process. Compared to normal MSCs, the MDS MSCs showed premature exhaustion, including reduced osteogenic differentiation ability, slower passage rate, and extremely limited passage times. These functional defects were associated with downregulation of Osterix and Runx2 genes and increased cell cycle arrest and apoptosis. However, the premature exhaustion of MDS MSCs did not correlate with patients' ages, indicating that natural aging is not the cause of dysfunction in MDS MSCs. Our result provides a strong rational to target prematurely exhausting MSCs in future MDS treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app