Add like
Add dislike
Add to saved papers

The Response of Phagocytes to Indoor Air Toxicity.

This perspective presents a viewpoint on potential methods assessing toxicity of indoor air. Until recently, the major techniques to document moldy environment have been microbial isolation using conventional culture techniques for fungi and bacteria as well as in some instances polymerase chain reaction to detect microbial genetic components. However, it has become increasingly evident that bacterial and fungal toxins, their metabolic products, and volatile organic substances emitted from corrupted constructions are the major health risks. Here, we illustrate how phagocytes, especially neutrophils can be used as a toxicological probe. Neutrophils can be used either in vitro as probe cells, directly exposed to the toxic agent studied, or they can act as in vivo indicators of the whole biological system exposed to the agent. There are two convenient methods assessing the responses, one is to measure chemiluminescence emission from activated phagocytes and the other is to measure quantitatively by flow cytometry the expression of complement and immunoglobulin receptors on the phagocyte surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app