Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ubiquitin C-Terminal Hydrolase L1 regulates myoblast proliferation and differentiation.

Skeletal muscles are dynamic tissues that possess regenerative abilities, which require multiple processes and regulatory factors. Ubiquitin C-Terminal Hydrolase L1 (UCHL1), which is primarily expressed in neuronal tissues, was upregulated in skeletal muscles in disease conditions but its functional role in skeletal muscles is unknown. Using mouse myoblast cells C2C12 as an in vitro model, this study reported that UCHL1 elicits different regulation in myoblast cell proliferation and differentiation. We first observed that UCHL1 protein level was continuously declined during cell differentiation. Gene knockdown of UCHL1 by siRNA resulted in a significant decrease in cell proliferation but marked acceleration of cell differentiation and myotube formation. Meanwhile, UCHL1 gene knockdown upregulated myogenic factors myoD and Myogenin (MyoG). In mice, UCHL1 was significantly upregulated in denervated skeletal muscle. Overall, these novel data suggest that UCHL1 may play a role in myogenesis by promoting myoblast proliferation and inhibiting differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app