Add like
Add dislike
Add to saved papers

Thymosin β4 is involved in the antimicrobial immune response of Golden pompano, Trachinotus ovatus.

Thymosin beta belongs to the thymosin family, which consists of a series of highly conserved peptides involved in various biological processes. In teleosts, understanding of the immunological functions of thymosin beta is limited, particularly in vivo, which is essentially unknown. In the current study, we cloned and identified thymosin beta 4 from the teleost fish Golden pompano (Trachinotus ovatus), which we have named TroTβ4. We investigated the expression patterns and functions of TroTβ4 in both in vivo and in vitro assays. TroTβ4 is composed of 44 amino acids and shares high sequence identities with known thymosin β4 species in other teleosts, which contains a highly conserved actin-binding motif (LKKTET). The expression of TroTβ4 was most abundant in immune organs, and was significantly up-regulated in response to infection bacterial with one of a number of bacteria (including Edwardsiella tarda, Vibrio harveyi, and Streptococcus agalactiae). Purified recombinant TroTβ4 (rTroTβ4) inhibited the growth of bacteria, as measured using an automatic growth curve analyzer, indicating that TroTβ4 has antimicrobial functions. When administered in vivo, overexpression of TroTβ4 in T. ovatus, bacterial colonization of tissues was significantly reduced. In contrast, when a DNA vector-based siRNA technology was used to knock down TroTβ4 expression, bacterial dissemination and colonization of tissues increased significantly. Taken together, these results provide the first in vivo evidence to indicate that teleost thymosin beta 4 plays a significant role in innate antibacterial immune responses in addition to in vitro bacteriostatic activity. This provides valuable information regarding the biological functions of teleost thymosin beta.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app