JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

SCA1 + Cells from the Heart Possess a Molecular Circadian Clock and Display Circadian Oscillations in Cellular Functions.

Stem Cell Reports 2017 September 13
Stem cell antigen 1-positive (SCA1+ ) cells (SPCs) have been investigated in cell-based cardiac repair and pharmacological research, although improved cardiac function after injection has been variable and the mode of action remains unclear. Circadian (24-hr) rhythms are biorhythms regulated by molecular clocks that play an important role in (patho)physiology. Here, we describe (1) the presence of a molecular circadian clock in SPCs and (2) circadian rhythmicity in SPC function. We isolated SPCs from human fetal heart and found that these cells possess a molecular clock based on typical oscillations in core clock components BMAL1 and CRY1. Functional analyses revealed that circadian rhythmicity also governs SPC proliferation, stress tolerance, and growth factor release, with large differences between peaks and troughs. We conclude that SPCs contain a circadian molecular clock that controls crucial cellular functions. Taking circadian rhythms into account may improve reproducibility and outcome of research and therapies using SPCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app