Add like
Add dislike
Add to saved papers

Neocortical prodynorphin expression is transiently increased with learning: Implications for time- and learning-dependent neocortical kappa opioid receptor activation.

Behavioural Brain Research 2017 September 30
There are several lines of evidence that indicate a prominent role for the opioid system in the acquisition and consolidation of learned associations. Specifically, kappa opioid receptor (KOR) modulation has been demonstrated to alter various behavioral tasks including whisker trace eyeblink conditioning (WTEB). WTEB is an associative conditioning paradigm in which a neutral conditioned stimulus (CS; Whisker stimulation) is paired following a short stimulus free trace interval with a salient unconditioned stimulus that elicits a blink response (US; Eye shock). Work from our laboratory has shown that WTEB conditioning is dependent upon and induces plasticity in primary somatosensory cortex (S1), a likely site for memory storage. Our subsequent studies have shown that WTEB acquisition or consolidation are impaired when the initial or later phase of KOR activation in S1 is respectively blocked. Interestingly, this mechanism by which KOR is activated in S1 during learning remains unexplored. Dynorphin (DYN), KOR's endogenous ligand, is synthesized from the precursor prodynorphin (PD) that is synthesized from preprodynorphin (PPD). In S1, most PPD is found in inhibitory GABAergic somatostatin interneurons (SOM), suggesting that these SOM interneurons are upstream regulators of learning induced KOR activation. Using immunofluorescence to investigate the expression of PD and SOM, the current study found that PD/SOM expression was transiently increased in S1 during learning. Interestingly, these findings have direct implications towards a time- and learning-dependent role for KOR activation in neocortical mechanisms mediating learning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app