Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Omega-3 polyunsaturated fatty acids improve endothelial function in humans at risk for atherosclerosis: A review.

Epidemiology studies and clinical trials show that omega-3 polyunsaturated fatty acids (n-3 PUFAs) can prevent atherosclerotic morbidity and evidence suggests this may be mediated by improving endothelial dysfunction. Endothelial dysfunction is characterized by reduced vasodilation and a pro-inflammatory, pro-thrombotic state, and is an early pathological event in the development of atherosclerosis. Flow-mediated dilation (FMD), a gold standard for assessing endothelial dysfunction, is a predictor of future cardiovascular events and coronary heart disease risk. Notably, risk factors for endothelial dysfunction include classic risk factors for atherosclerosis: Elevated lipids, diabetes, hypertension, elevated BMI, cigarette smoking, and metabolic syndrome. In this paper, we review the ability of n-3 PUFAs to improve endothelial dysfunction in individuals with classic risk factors for atherosclerosis, but lacking diagnosed atherosclerotic disease, with the goal of identifying those individuals that might gain the most vasoprotection from n-3 PUFA supplements. We include trials using eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or alpha-linolenic acid (ALA) alone, or EPA+DHA; and assessing endothelial function by FMD, forearm blood flow, or peripheral arterial tonometry. We found that n-3 PUFAs improved endothelial dysfunction in 16 of 17 studies in individuals with hyperlipidemia, elevated BMI, metabolic syndrome, or that smoked cigarettes, but only in 2 of 5 studies in diabetics. Further, these trials showed that use of EPA+DHA consistently improve endothelial dysfunction; ALA-enriched diets appear promising; but use of EPA or DHA alone requires further study. We conclude that individuals with hyperlipidemia, elevated BMI, metabolic syndrome, or that smoke could derive vaosprotective benefits from EPA+DHA supplementation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app