Add like
Add dislike
Add to saved papers

Study of the effects of hearing on static and dynamic postural function in children using cochlear implants.

OBJECTIVE: The present study aimed to evaluate the postural control perturbations by the center of pressure parameters in two main approaches, cochlear implant turned "on" and "off".

METHODS: We included 25 children aged 8-10 years with unilateral cochlear implants and bilateral vestibular hypofunction deficit. To evaluate the postural function, each children was asked to stand on the force plate under 3 different conditions and cochlear implant turned "on" and "off": Condition (A) double stance from open eyes to closed eyes, Condition (B) double stance with open eyes engaging in the dual task and Condition (C) From double leg stance to one leg stance with open eyes for assessment of dynamic postural control. Also to calculate the center of pressure parameters, we designed new software for the force plate RESULTS: In condition A: although the results demonstrated an overall reduction in the mean of center of pressure parameters when the cochlear implant was "on", only the significant differences were seen in mean and standard deviations for anterior-posterior displacement, mediolateral displacement, area and mean velocity (P =0.00, P=0.04, P=0.02 and P=0.00, respectively) in open eyes In condition B: no significant difference was found between "on" and "off" cochlear implant in single or dual-task situations. In condition C: mean velocity variable demonstrated a significant difference (P=0.00) in the cochlear implant "on" condition in double leg stance only. Also, anterior-posterior displacement demonestrated a significant difference (P=0.00) when the cochlear implant was turned "on" in one leg stance situation.

CONCLUSION: The results of our study show that auditory information can improve postural stability and reduce body sways in different situations as an underlying system for reinforcement of the postural control in children without complete normal balance subsystems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app