Add like
Add dislike
Add to saved papers

Direct laser writing of micro-supercapacitors on thick graphite oxide films and their electrochemical properties in different liquid inorganic electrolytes.

In this article we demonstrate a simple approach to fabricate interdigitated in-plane electrodes for flexible micro-supercapacitors (MSCs). A nanosecond ultraviolet laser treatment is used to reduce and pattern the electrodes on thick graphite oxide (GO) freestanding films. These laser-treated regions obtained by direct writing provide the conducting channels for electrons in the capacitors. The electrochemical performance of the MSCs was evaluated in the presence of two different electrolytes and they exhibit characteristics of nearly electrical double layer capacitors. The MSCs have areal capacitances as 2.40, 2.23 and 1.62μF/cm2 for NaOH, Na2 SO4 and KCl electrolytes respectively, for measurements performed at the scan rate of 50mV/s. They retain ∼93.1% of their initial capacitances after 3500 cycles (scan rate=80mV/s) in NaOH electrolyte. The proposed laser treatment approach enables facile and fast fabrication of flexible MSCs without the need for tedious processing methods such as photolithographic micro-patterning and deposition of porous carbon or metallic current collectors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app