Add like
Add dislike
Add to saved papers

Increased β-catenin accumulation and nuclear translocation are associated with concentric hypertrophy in cardiomyocytes.

Defective Wnt/β-Catenin signaling, activated under various pathological conditions, can result in cardiac and vascular abnormalities. In the present study, the possible role of β-catenin over expression during cardiac hypertrophy was investigated. Ten samples from hearts of human patients with acute infarction, and granulation tissue from 20 patients and 10 from normal ones were collected in order to investigate roles of β-catenin in cardiac hypertrophy. H9c2 cardiomyoblast cells and Wistar rat primary neonatal cardiomyocytes were overexpressed with β-catenin. Expression levels of β-catenin protein were increased in human acute infarction tissues and rat hypertension heart tissues. Overexpression of this transcription factor induced actin filament formation and increased hypertrophic marker protein levels via MAPK pathway. In addition, β-catenin overexpression also resulted in increased elevation of NFATc3 and p-GATA4. Therefore, acute infarction resulted in β-catenin overexpression mediated hypertrophy in cardiomyocytes regulated through MAPK pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app