Add like
Add dislike
Add to saved papers

Optimization of the sensitivity/doses relationship for a bench-top EDXRF system used for in vivo quantification of gold nanoparticles.

The present work is devoted to optimizing the sensitivity-doses relationship of a bench-top EDXRF system, with the aim of achieving a detection limit of 0.010mg/ml of gold nanoparticles in tumor tissue (clinical values expected), for doses below 10mGy (value fixed for in vivo application). Tumor phantoms of 0.3cm3 made of a suspension of gold nanoparticles (15nm AurovistTM, Nanoprobes Inc.) were studied at depths of 0-4mm in a tissue equivalent cylindrical phantom. The optimization process was implemented configuring several tube voltages and aluminum filters, to obtain non-symmetrical narrow spectra with fixed FWHM of 5keV and centered among the 11.2-20.3keV. The used statistical figure of merit was the obtained sensitivity (with each spectrum at each depth) weighted by the delivered surface doses. The detection limit of the system was determined measuring several gold nanoparticles concentrations ranging from 0.0010 to 5.0mg/ml and a blank sample into tumor phantoms, considering a statistical fluctuation within 95% of confidence. The results show the possibility of obtaining a detection limit for gold nanoparticles concentrations around 0.010mg/ml for surface tumor phantoms requiring doses around 2mGy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app