Add like
Add dislike
Add to saved papers

A theoretical exploration of the effect of fluorine and cyano substitutions in diketopyrrolopyrrole-based polymer donor for organic solar cells.

A series of polymer donor materials 1-5 based on diketopyrrolopyrrole and thiophene unit which have been widely used in organic solar cells (OSCs) were investigated based on quantum chemical calculations. The effect of fluorine and cyano substitutions in polymer donor materials was focused on. Based on the investigation on electronic structures and optical properties of the reported molecules 1 and 2 and the analysis on some parameters relevant to charge dissociation ability at donor/acceptor interface constituted by 1 and 2 with PC61 BM such as intermolecular charge transfer and recombination, driving force and Coulombic bound energy, we explained why fluorine substitution can improve OPV efficiency through strengthening eletron-withdrawing ability from a theoretical perspective. Then we designed cyano-substituted polymers 3-5 with the aim of obtaining better photovoltaic donor materials. The results reveal that our attempt to design donor materials which can balance large open-circuit voltage (Voc ) and high short-circuit current (Jsc ) in OSCs has worked out. It is worth noting that the substitutions of fluorine and cyano groups synergistically reduce energy gap and HOMO energy level of polymers 3 and 4. Moreover, 3/PC61 BM and 4/PC61 BM heterojunctions show over 107 and 104 times higher than 1/PC61 BM on the ratios of intermolecular charge transfer and recombination rates (kinter-CT /kinter-CR ). Thus, our work here may provide an efficient strategy to design promising donor materials in OPVs and we hope it could be useful in the future experimental synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app