JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Where you are affects what you can easily imagine: Environmental geometry elicits sensorimotor interference in remote perspective taking.

Cognition 2017 December
Imagined perspective switches are notoriously difficult, a fact often ascribed to sensorimotor interference between one's to-be-imagined versus actual orientation. Here, we demonstrate similar interference effects, even if participants know they are in a remote environment with unknown spatial relation to the learning environment. Participants learned 15 target objects irregularly arranged in an office from one orientation (0°, 120°, or 240°). Participants were blindfolded and disoriented before being wheeled to a test room of similar geometry (exp.1) or different geometry (exp.2). Participants were seated facing 0, 120°, or 240°, and asked to perform judgments of relative direction (JRD, e.g., imagine facing "pen", point to "phone"). JRD performance was improved when participants' to-be-imagined orientation in the learning room was aligned with their physical orientation in the current (test) room. Conversely, misalignment led to sensorimotor interference. These concurrent reference frame facilitation/interference effects were further enhanced when the current and to-be-imagined environments were more similar. Whereas sensorimotor alignment improved absolute and relative pointing accuracy, sensorimotor misalignment predominately increased response times, supposedly due to increased cognitive demands. These sensorimotor facilitation/interference effects were sustained and could not be sufficiently explained by initial retrieval and transformation costs. We propose that facilitation/interference effects occurred between concurrent egocentric representations of the learning and test environment in working memory. Results suggest that merely being in a rectangular room might be sufficient to automatically re-anchor one's representation and thus produce orientation-specific interference. This should be considered when designing perspective-taking experiments to avoid unintended biases and concurrent reference frame alignment effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app