Add like
Add dislike
Add to saved papers

Evaluation of poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) cationic polymer capillary coating for capillary electrophoresis and electrokinetic chromatography separations.

Capillary electrophoresis and electrokinetic chromatography are typically carried out in unmodified fused-silica capillaries under conditions that result in a strong negative zeta potential at the capillary wall and a robust cathodic electroosmotic flow. Modification of the capillary wall to reverse the zeta potential and mask silanol sites can improve separation performance by reducing or eliminating analyte adsorption, and is essential when conducting electrokinetic chromatography separations with cationic latex nanoparticle pseudo-stationary phases. Semipermanent modification of the capillary walls by coating with cationic polymers has proven to be facile and effective. In this study, poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) polymers were synthesized by reversible addition-fragmentation chain transfer polymerization and used as physically adsorbed semipermanent coatings for capillary electrophoresis and electrokinetic chromatography separations. An initial synthesis of poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) polymer coating produced strong and stable anodic electroosmotic flow of -5.7 to -5.4 × 10-4 cm2 /V⋅s over the pH range of 4-7. Significant differences in the magnitude of the electroosmotic flow and effectiveness were observed between synthetic batches, however. For electrokinetic chromatography separations, the best performing batches of poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) polymer performed as well as the commercially available cationic polymer polyethyleneimine, whereas polydiallylammonium chloride and hexadimethrine bromide did not perform well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app