Add like
Add dislike
Add to saved papers

Design and characterization of alcalase-chitosan conjugates as potential biocatalysts.

In this study, alcalase (protease from Bacillus licheniformis) immobilization by adsorption, enzyme crosslinking and covalent enzyme binding to activated chitosan microbeads were examined. The biocatalysts highest activity was obtained by covalent immobilization of alcalase onto a solid support. The alcalase covalent immobilization onto different types of chitosan beads obtained by inverse emulsion technique and electrostatic extrusion was studied. Parameters examined under different conditions were beads diameter, enzyme loading, enzyme capacity yield, and biocatalyst activity. The highest activity and enzyme loading of 23.6 IU/mg protein and 340.2 mg/g, respectively, were achieved by the enzyme immobilized onto chitosan microbeads obtained by the electrostatic extrusion technique. FT-IR analysis was used to confirm formation of alcalase-chitosan conjugates. The activity of optimally produced alcalase-chitosan microbeads was then verified in the industrially feasible reaction systems of egg white and soy protein hydrolysis. The high degree of hydrolysis of 29.85 ± 0.967% after 180 min and five successive reuses obtained under real conditions (50 °C, pH 8) verified the covalently bound alcalase to chitosan beads a promising candidate for use in industrial egg white protein hydrolysis process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app