Add like
Add dislike
Add to saved papers

CREB3L2-mediated expression of Sec23A/Sec24D is involved in hepatic stellate cell activation through ER-Golgi transport.

Scientific Reports 2017 August 12
Hepatic fibrosis is caused by exaggerated wound healing response to chronic injury, which eventually leads to hepatic cirrhosis. Differentiation of hepatic stellate cells (HSCs) to myofibroblast-like cells by inflammatory cytokines is the critical step in fibrosis. This step is accompanied by enlargement of the endoplasmic reticulum (ER) and Golgi apparatus, suggesting that protein synthesis and secretion are augmented in the activated HSCs. However, the process of rearrangement of secretory organelles and their functions remain to be fully elucidated. Here, we revealed that differentiation alters early secretory gene expression. We observed significant isoform-specific upregulation of the inner coat protein complex II (COPII) components, Sec23A and Sec24D, via the transmembrane bZIP transcription factor, CREB3L2/BBF2H7, during HSC activation. Moreover, knockdown of these components abrogated the activation, suggesting that Sec23A/Sec24D-mediated ER to Golgi trafficking is required for HSC activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app