Add like
Add dislike
Add to saved papers

Conductance fluctuations in InAs quantum wells possibly driven by Zitterbewegung.

Scientific Reports 2017 August 12
The highly successful Dirac equation predicts peculiar phenomena such as Klein tunnelling and Zitterbewegung (ZB) of electrons. From its conception by Erwin Schrödinger, ZB has been considered key in understanding relativistic quantum mechanics. However, observing the ZB of electrons has proved difficult, and instead various emulations of the phenomenon have been proposed producing several successes. Concerning charge transport in semiconductors and graphene, expectations were high but little has been reported. Here, we report a surprisingly large ZB effect on charge transport in a semiconductor nanostructure playing "flat pinball". The setup is a narrow strip of InAs two-dimensional electron gas with strong Rashba spin-orbit coupling. Six quantum point contacts act as pinball pockets. In transiting between two contacts, ZB appears as a large reproducible conductance fluctuation that depends on the in-plane magnetic field. Numerical simulations successfully reproduced our experimental observations confirming that ZB causes this conductance fluctuation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app