JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Air blood barrier phenotype correlates with alveolo-capillary O 2 equilibration in hypobaric hypoxia.

The O2 diffusion limitation across the air blood barrier (DO2 and subcomponents Dm and Vc) was evaluated in 17 healthy participants exposed to hypobaric hypoxia (HA, 3840m, PI O2 ∼90mmHg). A 10% decrease in alveolar volume (VA) in all participants suggested the development of sub-clinical interstitial lung edema. In >80% of participants DO2 /VA increased, reflecting an individual strategy to cope with the hypoxia stimulus by remodulating Vc or Dm. Opposite changes in Dm/Vc ratio were observed and participants decreasing Vc showed reduced alveolar blood capillary transit time. The interplay between diffusion and perfusion (cardiac output) was estimated in order to investigate the individual adaptive response to hypoxia. It appears remarkable that despite individual differences in the adaptive response to HA, diffusion limitation did not exceed ∼11% of the alveolar-venous PO2 gradient, revealing an admirable functional design of the air-blood barrier to defend the O2 diffusion/perfusion function when facing hypobaric hypoxia corresponding to 50mmHg decreased PA O2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app