Add like
Add dislike
Add to saved papers

Decoding fMRI activity in the time domain improves classification performance.

NeuroImage 2018 October 16
Most current functional Magnetic Resonance Imaging (fMRI) decoding analyses rely on statistical summaries of the data resulting from a deconvolution approach: each stimulation event is associated with a brain response. This standard approach leads to simple learning procedures, yet it is ill-suited for decoding events with short inter-stimulus intervals. In order to overcome this issue, we propose a novel framework that separates the spatial and temporal components of the prediction by decoding the fMRI time-series continuously, i.e. scan-by-scan. The stimulation events can then be identified through a deconvolution of the reconstructed time series. We show that this model performs as well as or better than standard approaches across several datasets, most notably in regimes with small inter-stimuli intervals (3-5s), while also offering predictions that are highly interpretable in the time domain. This opens the way toward analyzing datasets not normally thought of as suitable for decoding and makes it possible to run decoding on studies with reduced scan time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app