Add like
Add dislike
Add to saved papers

Reprint of "Anticancer activity of hydroxy- and sulfonamide-azobenzene platinum(II) complexes in cisplatin-resistant ovarian cancer cells".

The syntheses of three platinum(II) complexes bearing sulfonamide-((E)-2-(4-methylphenylsulfonamido)-2',6'-difluoroazobenzene, HL1) and hydroxy-azo-2,6-difluorobenzene ((E)-2-((2,6-difluorophenyl)diazenyl)phenol, HL2) bidentate ligands is described. These complexes, [Pt(L1)(DMSO)Cl] (1), [Pt(L2)(DMSO)Cl] (2), and [Pt(L2)2 ] (3), were characterized by multinuclear NMR spectroscopy, mass spectrometry, and X-ray crystallography. Despite bearing azobenzene functional groups, none of the three complexes undergo photoisomerization. The anticancer activities of these complexes were evaluated in wild-type (A2780) and cisplatin-resistant (A2780CP70) ovarian cancer cells. All three complexes exhibited IC50 values below 10μM and displayed similar activity in both A2780 and A2780CP70 cell lines, indicating that they are not cross-resistant with cisplatin. The DNA-binding properties of 1-3 were investigated by circular dichroism spectroscopy and by agarose gel electrophoresis. Both studies suggest that 1 and 2 form monofunctional DNA adducts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app