Add like
Add dislike
Add to saved papers

Targeting lysyl oxidase reduces peritoneal fibrosis.

BACKGROUND: Abdominal surgery and disease cause persistent abdominal adhesions, pelvic pain, infertility and occasionally, bowel obstruction. Current treatments are ineffective and the aetiology is unclear, although excessive collagen deposition is a consistent feature. Lysyl oxidase (Lox) is a key enzyme required for crosslinking and deposition of insoluble collagen, so we investigated whether targeting Lox might be an approach to reduce abdominal adhesions.

METHODS: Female C57Bl/6 mice were treated intraperitoneally with multiwalled carbon nanotubes (NT) to induce fibrosis, together with chemical (ß-aminoproprionitrile-BAPN) or miRNA Lox inhibitors, progesterone or dexamethasone. Fibrotic lesions on the diaphragm, and expression of fibrosis-related genes in abdominal wall peritoneal mesothelial cells (PMC) were measured. Effects of BAPN and dexamethasone on collagen fibre alignment were observed by TEM. Isolated PMC were cultured with interleukin-1 alpha (IL-1α) and progesterone to determine effects on Lox mRNA in vitro.

RESULTS: NT-induced fibrosis and collagen deposition on the diaphragm was ameliorated by BAPN, Lox miRNA, or steroids. BAPN and dexamethasone disrupted collagen fibres. NT increased PMC Lox, Col1a1, Col3a1 and Bmp1 mRNA, which was inhibited by steroids. Progesterone significantly inhibited IL-1α induced Lox expression by PMC in vitro.

CONCLUSION: Our results provide proof-of-concept that targeting peritoneal Lox could be an effective approach in ameliorating fibrosis and adhesion development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app