Add like
Add dislike
Add to saved papers

Quantification of cyclocreatine in mouse and rat plasma using hydrophilic-interaction ultra-performance liquid chromatography-tandem mass spectrometry.

An accurate, rapid and selective method was developed to quantify cyclocreatine in mouse and rat plasma using hydrophilic interaction (HILIC) ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The plasma samples were prepared by protein precipitation with acetonitrile:methanol (70:30). Chromatographic separation was performed on a HILIC BEH amide column (2.1mm×50mm, 1.7μm) with a 3min gradient elution at a flow rate of 0.5mL/min. For mass spectrometric detection, selected reaction monitoring (SRM) was used; the SRM transitions were m/z 144→98 and m/z 144→56 for cyclocreatine and m/z 148→102 for the internal standard (D4-cyclocreatine) in the positive ionization mode. No endogenous components interfered with the analysis of cyclocreatine and the internal standard in mouse and rat plasma. Plasma calibration curves were constructed in the range of 0.01-25μM. The correlation coefficient of the calibration curves was greater than 0.99. The mean intraday assay accuracy for all quality control (QC) replicates was between 93 and 105%. The mean intraday assay precision (CV%) was 1.9-11% for all QC levels. The HILIC-UPLC-MS/MS method was successfully applied in pharmacokinetic (PK) studies of cyclocreatine in mice and rats for the first time. After a single 30mg/kg oral administration in mice and rats, the AUC0-∞ (area under the curve) was 84.1μgh/mL and 91.7±18.0μgh/mL, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app