Add like
Add dislike
Add to saved papers

Biphasic-to-monophasic successive Co-assembly approach to yolk-shell structured mesoporous organosilica nanoparticles.

In this work, we report a facile biphasic-to-monophasic successive co-assembly approach to synthesize yolk-shell structured mesoporous organosilica nanoparticles (MONs). The yolk-shell structured MONs possess ethane-bridged frameworks, high surface area (1023m2 g-1 ), radially oriented mesochannels (3.8nm), large pore volume (0.99cm3 g-1 ), and tunable diameter (147-324nm) and shell thickness (23-53nm). The biphasic-to-monophasic successive co-assembly method is intrinsically simple and requires neither sacrificial templates nor multistep coating processes. The key of the method is that the interiors of the mesostructured organosilica nanospheres grown in the biphasic system have a lower condensation degree and Si-C-C-Si species content than the outer shells formed in the monophasic system. Thus, the interior layer is attracted by OH-1 anions and dissolved in the monophasic system, forming the yolk-shell structures. In vitro cytotoxicity and haemolysis assays demonstrate that the ethane-bridged yolk-shell MONs possess excellent biocompatibility. Furthermore, the chemotherapy drug doxorubicin (DOX) is loaded into the yolk-shell MONs to kill drug-resistant MCF-7/ADR human breast cancer cells. Compared with free DOX and DOX-loaded typical MONs, the DOX-loaded yolk-shell MONs have higher chemotherapeutic efficacy against MCF-7/ADR cells, suggesting the great potential of yolk-shell MONs synthesized via the biphasic-to-monophasic successive co-assembly approach in the biomedical field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app